1 秦野盆地地質調査

- (1) 地質調査ボーリング (2) 水源調査ボーリング
- 2 微動アレイ探査
 - (1) 微動アレイ探査 (2) 探査結果
- 3 水理地質構造モデル
 - (1) 水理地質構造モデルの構築 (2) 旧モデル (3) 新モデル
 - (4) 水理地質構造モデルの組立て
- 4 水質分析に基づく地下水流動機構
- (1) 水質分析の概要 (2) 水質分析の結果 (3) 地下水流動機構の検討
- 5 はだの水循環モデル
 - (1) モデル更新の基本方針 (2) 陸面モデル
 - (3) はだの水循環モデル(3次元格子モデル)
 - (4) はだの水循環マップ
- 6 地下水賦存量
- 7 地下水の浄化
 - (1) 目的 (2) 考え方
 - (3) シミュレーション (4) 結果

1 秦野盆地地質調查

(1) 地質調査ボーリング

泰野盆地の水理構造・特性に関する情報を充実させ、はだの水循環モデルの完成度 を高めるため、神奈川県水源環境保全・再生市町村補助金を活用し、平成29・30年度 に調査ボーリング実施しました。

- ア カルチャーパークボーリング調査
 - (ア) 調査場所 秦野市平沢 148 番地 カルチャーパーク内
 - (イ) 期 間 平成 29 年 6 月 23 日 ~ 平成 30 年 3 月 30 日
 - (ウ) 調査内容 機械ボーリング (オールコアボーリング)・湧水圧試験・電気検 層・孔内微流速測定・温度検層
 - (エ) 掘削深度 300m (Φ86mm: 0-195m、Φ66mm: 195-300m)
 - (オ) 観 測 井 300m (無孔管 VP50:0-118m、遮水区間:100-118m、有孔管

VP50:118-168m、砂利:168-300m)

図 2-1 カルチャーパーク試験結果まとめ

11

盆

地 地

質 調

第2章はだの水循環モデル

- イ さかえちょう公園ボーリング調査
 - (ア) 調査場所 秦野市栄町 2343-1 さかえちょう公園内
 - (イ) 期 間 平成 30 年 7 月 23 日 ~ 平成 31 年 2 月 28 日

(ウ) 調査内容 機械ボーリング (オールコアボーリング)・湧水圧試験・電気検 層・孔内微流速測定・温度検層

- (エ) 掘削深度 158.65m(Φ86mm: 0-119.62m、Φ66mm: 119.62-158.65m)
- (オ) 観測井 158.65m (無孔管 VP40:0-104m、遮水区間:86-104m、有孔管
 VP40:104-114m、砂利:114-158.65m)

ウ 鍵層の対比

カルチャーパーク及びさかえちょう公園で掘削したボーリングコア*1において広 域対比可能なローム層*2(=鍵層*3)が複数枚確認されました。また、葛葉川及び 金目川支流沿いに露出している露頭*4について調査を行った結果、ボーリングコア 中の鍵層と対比可能なものが複数枚確認されました。

表 2-1 に鍵層対比概要を、図 2-3 にボーリング地点及び鍵層露頭の位置図を示し ます。また、図 2-4 にボーリングコア中における鍵層対比の断面図(A-A'測線) を、図 2-3 にボーリングコアと露頭における鍵層対比の断面図(B-B'測線)を示し ます。また、図 2-6~図 2-11 に鍵層対比写真を示します。

なお、ローム層序及び年代値等については、神奈川県立 生命の星・地球博物館 HP の「電子百科-神奈川の自然-関東ローム層」を参考にしました。

(参考 URL:http://nh.kanagawa-museum.jp/sizen/tephra/top_menu.cgi)

図 2-4 より、2 地点間の吉沢ローム層^{**5}(中部・下部)は標高差で約 5~20m程度 の落差しかなく、当時の地形通りにロームが堆積しているものと考えられます。一 方で、図 2-5 より葛葉川沿い露頭とさかえちょう公園との間には吉沢ローム層(中 部・下部)において、標高差で約 90m程度の落差があることが分かります。この2 地点は、水平距離で 900m程度しか離れていないことからも、当時の地形による影響 も考えられますが、主には逆断層^{**6}(秦野断層)によって落差が生じたものと推定 されます。

鍵層名	地層区分	年代値	H29ボーリングコア 【カルチャーパーク】	H30ボーリングコア 【さかえちょう公園】	葛葉川沿い露頭	金目川支流沿い露頭
東京軽石	新期ローム層	約6万6千年前	0	0	-	-
三浦軽石	11	約6万6千~7万年前	0	0	-	-
吉岡軽石	吉沢ローム層(上部)	約7万~8万年前	-	0	-	0
Kmp-4	吉沢ローム層(中部)	約10万~12万5千年前	0	0	0	0
Kmp-2	11	"	0	0	0	0
Kmp-1	11	"	0	0	0	0
Klp-14	吉沢ローム層(下部)	11	0	0	0	-
Klp-13	"	"	0	_	0	-
Klp-9	11	"	0	0	-	-

表 2-1 鍵層対比概要

※1 ボーリングコア:押し込み掘削(ボーリング)などによって採取される土壌や、岩石などの円柱状試料。※2 ローム層:主に火山灰や軽石が堆積した層。 ※3 鍵層:地層の年代の特定に用いる特徴的な層。※4 露頭:地層・岩石が露出している場所。※5 吉沢ローム層:約 14~7 万年前の箱根火山からの噴出物の 層。※6 逆断層:傾斜した断層面の上盤が下盤に対してずり上がった断層。

質 調

図 2-4 ボーリングコア中の鍵層対比結果(A-A'断面)

図 2-5 ボーリングコアと露頭における鍵層対比結果(B-B'断面)

1 秦野盆地地質調査第2章 はだの水循環モデル

図 2-6 コア中における東京軽石、三浦軽石の露出状況

<u>46 カルチャーパーク</u>	
Kmp-4	
	<u>47 さかえちょう公園</u>
	E CONTRACTOR
Kmp-2 Kmp-1	Kmp-2
Klp-13	Klp-14
・コア写真(GL-108~120m)	・コア写真(GL-84~93m)

図 2-7 コア中における吉沢ローム層 (中部・Kmp-4、Kmp-2、Kmp-1)、 吉沢ローム層 (下部・Klp-14、Klp-13)の露出状況

図 2-10 吉沢ローム層(中部・Kmp-2)の側方対比

図 2-11 吉沢ローム層(下部・Klp-14)の側方対比

エ 地下水分布

カルチャーパークとさかえちょう公園においてボーリング調査をした結果から推 定される帯水層について図 2-12 に示します。

平成 29・30 年度の調査により、この地域には水頭差が大きく異なる 2 つの帯水層 (上から浅部帯水層①、深部帯水層②とする)が存在することが判明しました。この 2 つの帯水層を隔てる難透水層は Kmp-4~Klp-14 を含む厚層のローム層(=広域難透 水層)であると推定されます。特にカルチャーパーク地点では、浅部帯水層①と深部 帯水層②の間で約43mの水頭差が存在しており、広域難透水層の遮水が非常に良く機 能していることが考えられます。一方で、さかえちょう公園地点では、両帯水層の水 頭差は約2m程度と、あまり差が見られません。この原因の一つとして、この地点付 近においては、広域難透水層の遮水性がカルチャーパーク地点に比べるとやや低く浅 部帯水層①から深部帯水層②への水の流入が生じていることが考えられます。

才 考察

(ア) 湧水圧試験^{※1}

- ・ 吉沢ローム層の上位帯水層と下位帯水層の地下水頭差は、カルチャーパー クでは約43mでしたが、さかえちょう公園では約2mと少なくなっていま す。しかし、双方の下位帯水層の地下水頭は、標高78.4mと77.51mで、お おむね一致しています。このことから、吉沢ローム層が遮水層として機能し ている帯水層^{*2}の二層構造が、広い範囲にわたることが分かりました。
- (イ) 孔内検層*3(電気検層・微流速測定・温度検層)
 - ・ 電気検層では、双方ともローム層区間で非抵抗値が低下し、砂礫層区間で
 上昇する傾向が見られました。
 - 、 微流速測定では、双方ともほぼ全区間において下降流が見られ、孔内の水 Eに対して帯水層側の水圧が低いため、逃水となっていることが分かりまし た。ただし、すべての層で一様の流れではなく、上昇流(湧水)の区間も見 られます。また、下位帯水層において、下降流が主体であるため、地層にや や透水性が高い区間が存在し、地下水に流動性があり水圧を逃がしている可 能性が考えられます。
 - ・ 温度検層では、双方とも、地表面付近の気温の影響を受けない深度(恒温 層)以深において、孔内水温が16℃台でほぼ一定でした。一般的に恒温層
 - (15-20m)以深では、深度の増加とともに地温が2.5-3.5℃/100m上昇しま すが、孔内水温にこの現象が見られないことから、地下水が流動しているこ とを示唆しています。

※1 湧水圧試験:岩盤または粗粒土層(砂層、砂礫層、粗粒火山灰層)の平衡水位及び透水係数を求める試験。※2 帯水層:水の通しやすさ(透水性)と水を ためる能力(貯留性)が高く、井戸での取水や湧水として連続して地下水を供給し得る地層のこと。主に砂礫層、砂層。※3 孔内検層:ボーリング孔を用いて、 帯水層の位置や厚さ、流動状況、温度分布を求める試験。 秦野盆地地質

調

(2) 水源調査ボーリング

平成 29・30 年度の調査ボーリングで確認された吉沢ローム層より深い位置にある帯 水層の水質及び揚水可能性について調査するため、令和元年度に水源調査ボーリング を実施しました。

- ア 調査場所 秦野市戸川 567-1
- イ 期 間 令和元年11月5日~令和2年3月27日
- ウ 調査内容 機械ボーリング (ロータリー式ボーリング)・電気検層・予備揚水試験・段階揚水試験・定量揚水試験・回復法試験・水質分析 (水道法 51 項目)
- エ 掘削深度 170m (Φ311mm)
- オ 観測井 170m(Φ165.2mm、無孔管 SGP:0-114.5m、遮水区間:0-100m、有孔
 管 SGP:114.5-147.5m、無孔管 SGP:147.5-153m、砂利:

第2章はだの水循環モデル

カ 適正揚水流量検討結果

段階揚水試験は、次の6段階の揚水流量で実施しました。各段階の揚水流量で1 時間揚水を継続した後に揚水流量を大きくしました。

揚水流量 段 階	揚水流量 (L/min)	最終水位 (GL- m)	水位低下量 (m)
		60.03	
1	401	60.64	0.61
2	454	60.88	0.24
3	502	61.07	0.19
4	552	61.28	0.21
15	605	61.46	0.18
6	638	61.61	0.15

表 2-2 段階揚水試験結果一覧

自然水位が GL-60.03mですが、段階揚水試験の最終水位は、GL-61.61mで、試験 全体の水位低下量は 1.58mと大きくない値であるため、適正揚水流量を 638L/min と 判定しました。

秦野盆

地地

| 質調査

揚水流量対水位低下量図(図2-15)では、揚水流量の増加に対して水位の低下幅 が明確に大きくなる揚水流量は確認されなかったため、調査で設置した井戸の限界

キ 水理定数解析結果

揚水試験の解析結果から、今回揚水試験を実施した地層の透水係数は、6.49×10⁻⁴ m/s、貯留係数は6.57×10⁰¹と計算されました。

表 2-3 揚水試験結果一覧

工事名	令和元年度産業利用促進ゾーン水源調査ボーリング委託業務 1							
所有者名	秦野市							
施工位置	神奈川県秦野市戸川 地内							
深度	170.00 m	管径		150 mm	ストレーナス	有効長	30.00 m	
						·		
・段階揚水試	験結果							
試験日	2020年03月0	06日		自然水	位(GL- 6	0.03 m	
適正揚水量	638.0 L/m	in (918.7 m³/da	ay)	適正揚水	、位 (GL- 6	1.78 m	
限界揚水量				限界揚水	、位			
最大揚水量	638.0 L/m	in (918.7 m³/da	ıy)	最大揚水	、位 (GL- 6	1.61 m	
試験内容				水	温	14	4.0 °C	
適正揚水	量の判定							
・連続揚水試	験結果							
試 験 日	2020年03月0	07日		自然水	位(GL- 6	0.09 m	
揚 水 量	638.0 L/min (918.7 m³/day) 水 温 14.0 °C						4.0 ℃	
・水理定数の	算出結果							
		透水量係数		透水係数	夊	貝	宁留係数	
ヤコブの直線	線 析法 1.5	$54 \times 10^{-01} \text{ m}^2/\text{min}$	8.	$55 \times 10^{-03} \text{ cm/s}$ 1.31×10			31×10^{02}	
タイスの非	平衡式 4.3	$30 \times 10^{-01} \text{ m}^2/\text{min}$	2.	38×10^{-0}	² cm/s	3. 9	91×10^{-01}	
回復	法 2.9	92×10^{00} m ² /min	1.	62×10^{-0}	1 cm/s			
平	均 1.1	17×10^{00} m ² /min	6.	49×10^{-0}	² cm/s	6. 5	57×10^{01}	
備考								

第2章 はだの水循環モデル

秦野盆地地質調査

ク 水質分析結果

定量揚水試験時の揚水から、試験検体を採取し、水道法第4条(水質基準)の51 項目について水質試験を実施しました。

水質試験結果は、一般細菌数が180で、水質基準(100以下)を満たさず、基準に 適合しませんでした。

しかし、水道法第4条(水質基準)は、水道により供給される水(基本的に給水 栓を出る水)について適用されるものであり、原水について適用されるものではな いこと(平成15年3月厚生科学審議会「水質基準の見直し等について(案)」5項 より引用)から、適切な塩素消毒を実施すれば飲用可能と考えられます。

また、新しく掘削した井戸水からの一般細菌検出は珍しいことではなく、揚水の継 続により細菌数が減少することも一般的によくあると言われています。

検 査 項 目	単位	結果	基準値	定量 下限値	検査方法			
一般細菌	CFU/ml	* 180	100以下		半15厚芳省告示第261号 別表1 標準寒天培地法			
大腸菌		不検出	検出されないこと		平15厚労省告示第261号 別表2 特定酵素基質培地法			
カドミウム及びその化合物	mg/L	0.0003未満	0.003以下	0.0003	平15厚労省告示第261号 別表5 ICP発光分光分析法			
水銀及びその化合物	mg/L	0.00005未満	0.0005以下	0.00005	平15厚労省告示第261号 別表7 還元気化-原子吸光法			
セレン及びその化合物	mg/L	0.001未満	0.01以下	0.001	平15厚労省告示第261号 別表9 水素化物発生-ICP法			
鉛及びその化合物	mg/L	0.001未満	0.01以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
ヒ素及びその化合物	mg/L	0.001未満	0.01以下	0.001	平15厚労省告示第261号 別表11 水素化物発生-ICP法			
六価クロム化合物	mg/L	0.003	0.05以下	0.001	平15厚劳省告示第261号 別表5 ICP発光分光分析法			
亜硝酸態窒素	mg/L	0.004未満	0.04以下	0.004	平15厚労省告示第261号 別表13 イオンクロマト法			
シアン化物イオン及び塩化シアン	mg/L	0.001未満	0.01以下	0.001	平15厚労省告示第261号 別表12 イオンクロマト-PC法			
硝酸態窒素及び亜硝酸態窒素	mg/L	3. 56	10以下	0.03	平15厚労省告示第261号 別表13 イオンクロマト法			
フッ素及びその化合物	mg/L	0.05未満	0.8以下	0.05	平15厚労省告示第261号 別表13 イオンクロマト法			
ホウ素及びその化合物	mg/L	0.008	1.0以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
四塩化炭素	mg/L	0.0001未満	0.002以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
1,4-ジオキサン	mg/L	0.0005未満	0.05以下	0.0005	平15厚労省告示第261号 別表15 HS-GC-MS法			
シス及びトランスー1, 2ーシ クロロエチレン	mg/L	0.0002未満	0.04以下	0.0002	平15厚労省告示第261号 別表15 HS-GC-MS法			
ジクロロメタン	mg/L	0.0001未満	0.02以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
テトラクロロエチレン	mg/L	0.0001未満	0.01以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
トリクロロエチレン	mg/L	0.0001未満	0.01以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
ベンゼン	mg/L	0.0001未満	0.01以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
塩素酸	mg/L	0.06未満	0.6以下	0.06	平15厚労省告示第261号 別表16の2 イオンクロマト法			
クロロ酢酸	mg/L	0.001未満	0.02以下	0.001	平15厚労省告示第261号 別表17 溶媒抽出-GCMS法			
クロロホルム	mg/L	0.0001未満	0.06以下	0, 0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
ジクロロ酢酸	mg/L	0.001未満	0.03以下	0.001	平15厚労省告示第261号 別表17 溶媒抽出-GCMS法			
ジブロモクロロメタン	mg/L	0.0001未満	0.1以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
臭素酸	mg/L	0.001未満	0.01以下	0.001	平15厚労省告示第261号 別表18 イオンクロマト-PC法			
*:基準に適合しないもの	*:基準に適合しないもの 次葉に続く							
試験目的 水道法水質基準適否								
判定 上記試験項目につい	ては試験	目的水質基準に	不適合	In the second				
備考 採取時水温:14.0℃	備考 採取時水温:14.0℃							

表 2-4 水質験結果一覧(1/2)

地地質調査

表 2-4 水質験結果一覧(2/2)

検査項目	単位	結果	基準値	定量 下限値	検査方法			
総トリハロメタン	mg/L	0.0008未満	0.1以下	0.0008	平15厚労省告示第261号 別表15 HS-GC-MS法			
トリクロロ酢酸	mg/L	0.001未満	0.03以下	0.001	平15厚労省告示第261号 別表17 溶媒抽出-GCMS注			
ブロモジクロロメタン	mg/L	0.0001未満	0.03以下	0.0001	平15厚労省告示第261号 別表15 HS=GC-MS法			
ブロモホルム	mg/L	0.0001未満	0.09以下	0.0001	平15厚労省告示第261号 別表15 HS-GC-MS法			
ホルムアルデヒド	mg/L	0.005未満	0.08以下	0.005	平15厚労省告示第261号 別表19の2 議導休化-HPIC注			
亜鉛及びその化合物	mg/L	0, 080	1.0以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
アルミニウム及びその化合物	mg/L	0, 034	0.2以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
鉄及びその化合物	mg/L	0.056	0.3以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
銅及びその化合物	mg/L	0, 002	1.0以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
ナトリウム及びその化合物	mg/L	5.5	200以下	0.02	平15厚労省告示第261号 別表5 ICP発光分光分析法			
マンガン及びその化合物	mg/L	0, 004	0.05以下	0.001	平15厚労省告示第261号 別表5 ICP発光分光分析法			
塩化物イオン	mg/L	3.8	200以下	0.2	平15厚労省告示第261号 別表13 イオンクロマト法			
カルシウム、マグネシウム等(硬度)	mg/L	81	300以下	0.06	平15厚労省告示第261号 別表5 ICP発光分光分析法			
蒸発残留物	mg/L	143	500以下	1	平15厚労省告示第261号 別表23 重量法			
陰イオン界面活性剤	mg/L	0.02未満	0.2以下	0.02	平15厚労省告示第261号 別表24 固相抽出-HPLC法			
ジェオスミン	mg/L	0.000001未満	0.00001以下	0.000001	平15厚労省告示第261号 別表27 固相抽出-GCMS法			
2-メチルイソボルネオール	mg/L	0.000001未満	0.00001以下	0.000001	平15厚労省告示第261号 別表27 固相抽出-GCMS法			
非イオン界面活性剤	mg/L	0.005未満	0.02以下	0.005	平15厚労省告示第261号 別表28 固相抽出-吸光光度法			
フェノール類	mg/L	0.0005未満	0.005以下	0.0005	平15厚労省告示第261号 別表29 固抽-誘導-GCMS法			
有機物等(全有機炭素(TOC)の量)	mg/L	0.3未満	3以下	0.3	平15厚労省告示第261号 別表30 全有機炭素計測定法			
p H値		7.8	5.8以上8.6以下		平15厚労省告示第261号 別表31 ガラス電極法			
味	-	分析不可	異常でないこと		平15厚労省告示第261号 別表33 官能法			
臭気		異常なし	異常でないこと	—	平15厚労省告示第261号 別表34 官能法			
色度	度	0.9	5以下	0.5	平15厚労省告示第261号 別表36 透過光測定法			
濁度	度	0.1	2以下	0.1	平15厚労省告示第261号 別表41 積分球式光電光度法			
以下余白								
*:基準に適合しないもの								
試験目的 水道法水質基準適否	試験目的 水道法水質基準適否							
判定 1 葉目に記載								
備考 採取時水温:14.0℃								

ケ 考察

- (ア) 地質
 - ・ さく井の地質区分は、削孔時のビット・ロッド・スピンドルの回転状況、
 排出される掘削屑の土質等の観察結果及び電気検層結果に基づいて検討し区分されたものです。
 - ・ 今回の調査結果で、GL-97.0m~GL-101.5m(標高 92.00m~標高 87.5m) に吉沢ローム層に対応すると考えられる粘性土層の分布が見られました。
 - ・ 吉沢ローム層の下位 GL-101.5m~GL-158.0m (標高 87.5m~標高 31.0m) には、締まった砂礫層がみられ、その下位では、上位の砂礫層と比較して 削孔速度が遅くなり、比抵抗値が小さくなることから基盤岩が分布すると 推定されます。
 - ・ GL-158.0mの地質サンプルで、丹沢山地を構成する凝灰岩が確認された ことから、基盤岩までボーリングが達したこととなります。
- (イ) 揚水試験
 - ケーシング(Φ165.2mm)に入る水中ポンプで、吉沢ローム層より深い帯水 層から揚水した結果、水位低下が1.58mと小さく、今回の調査における適正 揚水量は638L/minとなりました。
 - ・ 限界揚水量は、揚水流量の増加に対して大幅な水位低下が見られる揚水流 量が確認できなかったため、揚水ポンプ能力の限界の 638L/min 以上となりま した。
 - ・ 今回の調査で設置した井戸においては、適正揚水量と限界揚水量が、揚水 ポンプの能力の限界となったことから、帯水層には余力があることが分か り、吉沢ローム層より深い帯水層からの揚水の可能性はかなり高いと考えら れます。
- (ウ) 水質分析
 - ・ 今回の調査では、一般細菌が水質基準値を上回り不適合となりましたが、
 その他の項目はすべて基準値以内であり、水道水源としても利用できる水質が確認されました。
 - ・ 硬度は、81 mg/Lの中程度の軟水で、近くの取水場の地下水から作られている「おいしい秦野の水~丹沢の雫」(89 mg/L)と同程度でした。

杳

2 微動アレイ探査

(1) 微動アレイ探査

秦野盆地の地下水構造や地下水賦存量を把握するうえで、吉沢ローム層の連続性と 基盤岩分布の把握が重要となります。しかし、平成29・30年度に実施した地質調査ボ ーリングでは、基盤岩の確認には至りませんでした。そこで、秦野盆地の基盤岩の分 布状況等を把握するため、調査数量の限られるボーリング調査に代えて、広範囲での 調査が可能な微動アレイ探査を実施しました。

ア 微動アレイ探査の方法

地面がわずかに揺れている現象(常時微動)を複数の上下振動センサー(高感度 地震計)で同時に計測し、それらの波形データから表面波の周波数ごとの伝播速度 (位相速度)を抽出して、地盤のS波(横波)速度分布を得る手法です。

周波数が低い微動ほど深い地層の速度層を反映

イ 測定方法

微動アレイ探査の測定 に当たっては、測点数が 少なく、探査深度が深い SPAC(空間自己相 関)法を採用しました。

(2) 探査結果

- ア 探査場所 市内12地点 (図2-19参照)
- イ 実施期間 地点A-G:平成30年9月21日~27日
 地点H-L:令和元年8月5日~9日

サイズ・番号			基盤岩				
点名・場所		500m級	250m級	125m級	60m級	その他	深度
А	堀西地区	430m三角	213m三角	(120m直線)	(60m直線)	90m直線	133m
В	桜土手古墳公園	505m三角	255m三角	127m三角	63m三角		365m
С	カルチャーパーク	480m三角	240m三角	120m三角	60m直線		382m
D	本町小学校	524m三角	262m三角	126m三角	60m直線		348m
Е	北中学校	523m三角	228m三角	120m直線	60m直線		170m
F	西田原地区	515m三角	(255m三角)	120m直線	60m直線		127m
G	落合地区(予備)		250m三角	105m三角	56m三角		53m

表 2-5 微動アレイ探査のアレイサイズと形状及び基盤岩深度一覧

サイズ		5	アレイサイズ(出	計画最大	基盤岩		
点彳	名·場所	300~500m級	150 [~] 250m級	100m級	50m級	探査深度	深度
Н	渋沢3丁目	464m三角	265m三角	117m三角	60m直線	500m	294. 9m
Ι	今泉地区 (南小学校)	548m三角	274m三角	135m三角	60m直線	500m	484. 1 m
J	南が丘1丁目	400m三角	227m三角	100m三角	60m直線	400m	419. 1m
Κ	西大竹地区	306m三角	164m三角	102m三角	42m三角	300m	257m
L	上大槻地区 (なでしこ運動広場)		193m三角	87m直線	(60m直線) 30m三角	200m	225. 6m

注)()付きのアレイは解析に使用されなかったもの

アレイタイプ:三角=正三角形アレイ、直線=直線アレイ

第2章 はだの水循環モデル

微動アレイ探査

ウ 解析結果

平成 30 年度・令和元年度の微動アレイ探査地点位置及び地質断面測線位置を図 2-20 に示します。また、探査結果を図 2-21 に、主な地質断面上に微動アレイ探査 結果を載せた断面図を図 2-22~図 2-23 に示します。

微動アレイ探査結果と併せて、基盤岩^{*1}及び吉沢ローム層の分布について、次のと おり整理しました。

(ア) 基盤岩の分布

微動アレイ探査結果では、S波速度 1000m/sec 前後の厚い速度層の下にS波速 度 2000m/sec 前後の最大速度層が観測されています。S波速度 2000m/sec は、こ の探査で得られる最大速度に近く、多くのケースで堅硬な岩盤に対応していま す。

従って、その境界深度が盆地内に堆積した砂礫層の基底に対応していると判 断されます。特に、速度のコントラストが大きなことから、その信頼性は高い と考えらます。

A地点からL地点の基盤深度は、53m(G地点)から484m(I地点)と複雑 に変化しており、複数の断層によって段違いが生じている可能性が考えられま す。

(イ) 吉沢ローム層の分布

吉沢ロームは、砂礫層よりS波速度は低いと考えられますが、微動アレイ探 査では、これに相当する速度層は検出されていません。吉沢ローム層の存在す る深度が深い割には厚さが薄いことが理由と考えられますが、加えて見かけほ ど速度の差がない可能性もあります。ただし、近傍にボーリングデータのある C地点、D地点では、吉沢ロームの深度付近より深部は、S波速度が速くなって いることから、S波速度1000m/sec 前後の厚い速度層の中の吉沢ローム層の位置 に対する手掛かりになっている可能性もあります。

吉沢ロームは、2箇所のボーリングで確認されているほか、新東名高速道路の ボーリング1箇所で、その可能性のある軽石の多いロームが記載されていま す。また、葛葉川と金目川沿いで、文献「秦野盆地の地質」に露頭が記載され ています。この層が遮水層になって、カルチャーパークで浅部と深部の地下水 の水頭を40m程度も変えていることから、この地層は盆地内でかなり広く連続 していると考えられます。

2

微動アレ

探査

はだの水循環モデル

第 2 章

微動アレイ探査

奚 2-21

第2章 はだの水循環モデル

微動アレイ探査

第2章 はだの水循環モデル

36